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PREFACE

One hundred years of PVI, the Fuchs–Painlevé
equation

The nonlinear ordinary differential equation
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which is nowadays known as the Painlevé VI (PVI) equation, is one of the most important
differential equations in mathematical physics. It was discovered just over 100 years ago
by Richard Fuchs (son of the famous mathematician Immanuel Lazarus Fuchs) and reported
for the first time as a paper in Comptes Rendus de l’Académie des Sciences Paris 1905 141
555–558 (a copy of which follows at the end of this preface). A year later B Gambier, in
his seminal paper of 1906, included this equation as the top equation in the list of what are
now known as the six Painlevé transcendental equations. The Painlevé list emerged from the
work on the classification of all ordinary-second order differential equations whose general
solutions are ‘uniform’, in the sense that there are no movable (i.e. as a function of the initial
data) singularities other than poles. This property is known as the Painlevé property. The six
equations (in addition to a few equivalent forms) are the only second-order ODEs (of first degree
in the leading derivative) whose general solution for generic parameters cannot be expressed
in terms of any known elementary or special functions, i.e. they are truly transcendental and
irreducible (the full proof of irreducibility was given only in the last decade by K Nishioka
and H Umemura).

The way in which Richard Fuchs arrived at the equation, which really should be called
the Fuchs–Painlevé equation, was in itself a signifcant step. Following the work of his father
(published in the Sitzungberichte der Berliner Akademie der Wissenschaften 1888–1898) he
looked for second-order linear differential equations with four essential singularities (without
loss of generality taken at 0, 1, ∞ and t) such that the ‘coefficients of substitution’ of the
fundamental system of solutions, when circulating the independent variable x around the
singularities, are independent of the movable singularity t . The linear differential equation
was prescribed to be of the form
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and the above condition, which in modern language would be called the property that the
monodromy of the equation is preserved while varying t , leads to the condition that one can
supply an additional linear equation of the form
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(3)
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Richard Fuchs (1873–1945). (Reproduced from the Technischen Universität Berlin.)

on the independent solutions yi , i = 1, 2 of the differential equation (2), as was predicted by
general considerations of Fuchs’ father (cf L Fuchs, in Sitzung-Berichte der Berliner Akademie
1893 and 1894). Notably in equation (2) the ‘apparent’ singularity λ (i.e. a singularity for
which the roots of the characteristic equation for the corresponding series expansion differ by
an integer, without the appearance, however, of logarithmic terms in the corresponding series
solutions), which should be present according to a result of Poincaré, will in principle depend
on the movable singularity t , and as a function of t , λ = λ(t) was shown by Fuchs to solve the
nonlinear ordinary differential equation (1). Nowadays, the overdetermined system consisting
of both (2) and (3) would be called a Lax pair, in the modern language of soliton theory, or
more precisely an isomonodromic deformation problem. Thus, Fuchs, had already in his paper
of 1905, introduced a number of concepts which attained a deep significance about seventy
years later, in particular with the work of K Okamoto in the 1970s, by H Flaschka and A
Newell and notably the series of works by M Jimbo, T Miwa and K Ueno in 1980 where the
isomonodromic theory of the Painlevé equations was developed further.

Another remarkable observation in Fuchs’ 1905 paper, and which was further developed
in his subsequent longer paper of 1907 (which is more often cited in the modern literature), is
that by introducing the incomplete elliptic integral

u =
∫ λ

0

dλ√
λ(λ − 1)(λ − t)

(4)

where notably t enters as the branch point (or modulus) of the elliptic curve, the equation for
λ, (1), can be expressed in terms of the Legendre operator for the Picard–Fuchs equation for
the corresponding curve. A year later this observation was taken a stage further by Painlevé in
his paper in the December issue of the Comptes Rendus of 1906 which establishes the elliptic
form of the Painlevé VI equation. This latter form plays an important role in the investigation
of algebraic solutions of PVI, for special parameter values, and was rediscovered by Yu Manin
in 1995 in his study of the mirror symmetries of the projective line. Thus, Fuchs’ 1905 paper



Preface

triggered a number of developments which have come to full fruition only in recent years.
Among the Painlevé equations PVI is the richest because the other equations can be

obtained by coalescence on the parameters. All Painlevé equations have been the subject
of intensive investigation in the last three decades, and the interest in these equations was
revived in the 1970s after it was discovered that forms of these equations emerge in physical
problems, e.g. the correlation functions of the 2D Ising model, in quantum spin models, in
soliton systems, in quantum gravity, string theory and random matrix theory. In particular
PVI has emerged as the key equation in the description of Frobenius manifolds, in connection
with particular solutions of the WDVV equations of conformal field theory and in connection
with the Ernst reduction of the Einstein equations. It is of historical significance that the year
2005, which celebrated Einstein’s remarkable discoveries, coincided with the centenary of
the discovery of PVI, and hence this special issue forms a particularly opportune occasion to
celebrate this important ordinary differential equation.

The importance of PVI can be recognized by appreciating that this is a universal differential
equation, which is the most general (in terms of number of free parameters) of the known
equations defining nonlinear special functions. As such, parallels can be drawn between the
role played by PVI transcendents in the nonlinear case and the hypergeometric functions at
the linear level. In fact, the monograph ‘From Gauss to Painlevé’ by K Iwasaki, H Kimura,
S Shimomura and M Yoshida (Vieweg 1991) draws very clearly the line stretching over more
than 150 years of special function theory in which PVI is placed as the key equation. In
recent years these lines have been extended into the discrete domain, i.e. the field of nonlinear
ordinary difference equations, and discrete analogues of PVI have been found which have
opened entirely new fields of investigation.

Remarkably, however, in spite of its importance, many open problems exist in the
understanding of PVI and of its solutions. This special issue, celebrating the centenary of
the discovery of the Painlevé VI equation in 1905, is dedicated to this remarkable equation and
its various ramifications. One such ramification is the generalization of equation (1) to higher-
order equations which had already been established in 1912 by one of Painlevé’s students,
René Garnier. The latter adopted Fuchs’ original idea of the isomonodromic deformation of a
linear second-order differential equation to the case of more than four essential singularities.
This leads to a complicated system of partial differential equations in what is now a collection
of moving singularities t1, . . . , tn, instead of a single variable t , but singling out any particular
moving singularity, t1 say, this Garnier system contains in particular a coupled set of second
order ODEs with t1 an independent variable, in terms of which the Painlevé property can
be established. We can thus consider this sytem as constituting a hierarchy of higher-order
analogues of the Painlevé VI equation.

Another, more recent, development has been the transition from differential to difference
equations. In recent years a number of discrete analogues of the Painlevé equations have been
discovered, which are ordinary nonlinear second-order difference equations sharing many
of the properties (such as the existence of isomonodromic deformation problems) with the
original Painlevé differential equations. In particular some discrete analogues of the Painlevé
VI equation, which under a specific continuum limit reduce to equation (1), have been proposed
by M Jimbo and H Sakai, B Grammaticos and A Ramani, and others. The establishment in
1999 by Sakai of an elliptic discrete Painlevé type equation on the basis of the study of rational
surfaces arising from the resolution of singularities of birational mappings, has been one of
the major triumphs of this development in the direction of difference equations.

We have tried in this special issue to bring together a number of strands of the modern
research on the Painlevé VI equations and its generalizations in the direction of higher-order
and discrete systems. Obviously, the collection of research articles in this volume can only
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represent a snapshot of the ongoing activities in this field. The special issue contains a number of
review papers in addition to contributed research papers, which we have divided into a number
of topics. The first part, Basic Theory, contains a number of topical reviews highlighting the
analysis of solutions (review papers by D Guzzetti and A Kitaev) and classification problems
(review by C Cosgrove) as well as contributions explaining the hierarchy structure of PVI
(by K Fuji and T Suzuki) and the connection with isomonodromic deformation problems on
the torus (by Yu Chernyakov et al). The second part, Coalescences and Reductions, contains
contributions highlighting how PVI emerges from reductions of soliton-type systems (by R
Conte, A M Grundland and M Musette) as well as the coalescence structure of the Painlevé
equations and Garnier systems (contributions by T Suzuki and by Y Ohyama and S Okumura).
The third part, Garnier Systems and Discrete Analogues, deals with generalizations to higher-
order differential equations (S Shimomura) and to discrete analogues of PVI (A Ramani et
al) and its generalizations (H Sakai) and hierarchies (by S Kakei and T Kikuchi, and by A
Tongas and F Nijhoff). The final part, Applications to Physics, contains a review on the
emergence of PVI in connection with random matrix theory (by P Forrester and N Witte) as
well as contributions highlighting connections with statistical mechanics (by V Bazhanov and
V Mangazeev, and by S Boukraa et al). The role of PVI in connection with general relativity
is highlighted in the paper by M Shah and N Woodhouse.

We look forward to the next 100 years of developments on equations related to PVI. Perhaps
in that time as much will be known about the elliptic discrete Painlevé type equations as we know
now about PVI. Eventually the nonlinear special functions that solve these equations should be
incorporated in our mathematical toolkit, as are the well-known linear and autonomous special
functions that we all learn about in our basic mathematical education.

P A Clarkson (University of Kent)
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M Noumi (Kobe University, Japan)
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(Reprinted with the kind permission of the French Academy of Sciences.)


